
● To study DMD, first we need time-series data. One-dimensional Burger’s equation was 
solved using Fast Fourier Transform (FFT) to give us a sequential set of spatio-temporal 
data points. 

● The standard DMD was fitted on the resulting dataset.
● For the first analysis, the truncation value r, of the SVD step in the DMD algorithm, was 

varied to see the effect of rank truncation on the DMD error in the interpolation 
mode. In addition, this gives us the optimum r value to perform further analyses with 
the DMD algorithm.

● Second, to study error growth in the extrapolation mode, DMD was fitted on only the 
first portion of our original time series data. The remaining portion was used to 
compare to the future state prediction by the DMD algorithm.

● Next, an analysis was done to see how fitting DMD on a larger dataset (i.e. more 
snapshots taken from a wider range of the time domain) affects the prediction 
accuracy of DMD. The results were compared with those of a separate analysis where 
the sampling rate of data is increased but the range of the time domain is kept the 
same. 

● Lastly, a theoretical estimator for DMD prediction error from literature was 
implemented and compared with the actual error growth in the extrapolation mode.  
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Introduction

● First data is split into two matrices:

     
● Assume there exists a best-fit linear matrix operator A such that

● Reduced SVD is performed on X where the truncation value r was chosen by 
the user:

                           
     where      has dimensions n x r,      is a diagonal matrix with dimensions r x r
     and     has the dimensions m x r.

● Define the new dimensionally reduced operator matrix:

● Spectral decomposition is done on the reduced operator matrix:

     where columns of W are the eigenvectors  and      is a diagonal matrix of
     eigenvalues.
● Then, the eigenvectors of the original high-dimensional matrix can simply be 

obtained as

● Finally, each snapshot of the system can be reconstructed using the DMD 
modes and eigenvalues

     where                       represents the coefficients of the initial state     .

The Standard DMD algorithm

Conclusions and Future Work
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Results

DMD modes and eigenvalues

Dynamic Mode Decomposition (DMD) is an emerging dimensionality algorithm 
that obtains linear reduced-order models from high-dimensional, non-linear 
dynamical systems. It extracts the dominant spatio-temporal modes of the 
dynamical system that are associated with the oscillation frequency and 
decay/growth rate. These modes can then be used to construct an equation that 
allows us to observe the state of the system at a given point in time. DMD was 
first developed by Peter Schmid in 2008 to analyze the time evolution of fluid 
flows. Today, DMD and its variants have applications in diverse range of fields, 
including but not limited to, disease modelling, finance, robotics, neural data 
analysis and image processing. The rising popularity of DMD can be attributed to 
the fact that it is purely data-driven and does not require any knowledge of the 
underlying equations of the system.

Figure 5. The plot shows how the truncation value (or rank) r used in 
SVD part of the DMD algorithm affects the interpolation error (i.e. 
data reconstruction error). At r=7, the truncation value used in 
subsequent analyses, the interpolation error is in the order of 10-18.

Figure 6. The plot shows that the future state prediction error for the standard 
DMD algorithm grows exponentially in time. Additionally, it shows that the more 
snapshots of data (i.e. data spanning longer length of time domain) that DMD is 
fitted on, the more accurate the DMD prediction is.

Figure 7. The plot shows the prediction error at different times in the 
future for three sampling rates. It shows that oversampling can increase 
the error growth at later times in the extrapolation mode.

Figure 8. A theoretical error bound from literature was 
implemented, which turns to be linear and hence fails to effectively 
bound the actual error which grows in a non-linear fashion.

● We observed how DMD can be used to extract the spatio-temporal patterns from a time-series dataset, in 
the form of modes and eigenvalues, which can be used to reconstruct the system with relatively small 
value of r or predict the state of the system in the near future (with limited accuracy).

● The predictive error by the standard DMD algorithm is shown to have an exponential-like growth. However, 
when DMD is fitted on data that is collected from a wider span of the time domain, the prediction accuracy 
improves as this allows DMD to capture the dynamics of the system better.

● Oversampling the data can increase the predictive error at later times in the extrapolation mode.
● A further in-depth analysis of the theoretical error bound is necessary in order to implement it correctly 

and use it for further analysis with DMD. 
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Figure 2. The plot shows the DMD modes or the 
eigenvectors which represent the separate patterns that 
the data is decomposed into. 

Figure 3. The plot shows the eigenvalues of the system, each of 
which corresponds to a DMD mode. The relative position each 
eigenvalue to the unit circle tells us the temporal behavior of the 
corresponding DMD mode.

Figure 4. Reconstructed system using the DMD modes and the eigenvalues.

Figure 1. The solution to 1D Burger’s equation, which is a travelling wave, at t = 0, 1.25 and 2.5 seconds.
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